
  

Functions
Part Two



  

Outline for Today
● Recap from Last Time

● Where are we, again?
● A Proof About Birds

● Trust me, it’s relevant. 😃
● Assuming vs Proving

● Two different roles to watch for.
● Connecting Function Types

● Relating the topics from last time.



  

Recap from Last Time



  

Domains and Codomains
● Every function f has two sets associated with it: its 

domain and its codomain.
● A function f can only be applied to elements of its 

domain. For any x in the domain, f(x) belongs to the 
codomain.

● We write f : A → B to indicate that f is a function 
whose domain is A and whose codomain is B.

Domain Codomain

The function 
must be defined 
for each element 

of its domain.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

need to be 
producable.



  

Involutions
● A function f : A → A from a 

set back to itself is called 
an involution when the 
following first-order logic 
statement is true about f:

∀x ∈ A. f(f(x)) = x.
(“Applying f twice is 

equivalent to not applying 
f at all.”)

● For example, f : ℝ → ℝ 
defined as f(x) = -x is an 
involution.

꩜

+

☞
≈

⬠



  

Injective Functions
● A function f : A → B is called injective (or one-to-one) when 

different inputs always map to different outputs.
● A function with this property is called an injection.

● Formally, f : A → B is an injection when this FOL statement is true:
∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different”)
● Equivalently:

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)
(“If the outputs are the same, the inputs are the same”)



  

Surjective Functions
● A function f : A → B is called surjective (or 

onto) when this first-order logic statement is 
true about f:

∀b ∈ B. ∃a ∈ A. f(a) = b
(“For every possible output,

there's an input that produces it.”)
● A function with this property is called a 

surjection.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.
Find an x where A is true.

Then prove that A is true for
that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Also prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.



  

New Stuff!



  

A Proof About Birds



  

Theorem: If all birds have feathers,
then all herons have feathers.



  

Theorem: If all birds have feathers, then all
herons have feathers.

All birds
have feathers

All herons
have feathers

(∀b. (Bird(b) → Feathers(b))) → (∀h. (Heron(h) → Feathers(h)))

 Given the predicates

Bird(b), which says b is a bird;
Heron(h), which says h is a heron; and
Feathers(x), which says x has feathers,

 translate the theorem into first-order logic.



  

To prove that
this is true…

∀x. A

∃x. A

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.
Find an x where A is true.

Then prove that A is true for
that specific choice of x.

Prove A. Also prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

A → B Assume A is true, then
prove B is true.

All birds
have feathers

All herons
have feathers

(∀b. (Bird(b) → Feathers(b))) → (∀h. (Heron(h) → Feathers(h)))



  

Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.

All birds
have feathers

All herons
have feathers

(∀b. (Bird(b) → Feathers(b))) → (∀h. (Heron(h) → Feathers(h)))

Which makes more sense as the 
next step in this proof?

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.
Consider an arbitrary bird b. Since b is a 
bird, b has feathers. [ and now we’re 
stuck! we are interested in herons, but b 
might not be one. It could be a 
hummingbird, for example! ]

All birds
have feathers

All herons
have feathers

(∀b. (Bird(b) → Feathers(b))) → (∀h. (Heron(h) → Feathers(h)))



  

Theorem: If all birds have feathers, then all
herons have feathers.

Proof: Assume that all birds have feathers.
We will show that all herons have feathers.
Consider an arbitrary heron h. We will 
show that h has feathers. To do so, note 
that since h is a heron we know h is a bird. 
Therefore, by our earlier assumption, h has 
feathers. ■

All birds
have feathers

All herons
have feathers

(∀b. (Bird(b) → Feathers(b))) → (∀h. (Heron(h) → Feathers(h)))



  

We never introduce a 
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → Feathers(b))) → (∀h. (Heron(h) → Feathers(h)))

Proving vs. Assuming
● In the context of a proof, you will need to 

assume some statements and prove others.
● Here, we assumed all birds have feathers.
● Here, we proved all herons have feathers.

● Statements behave differently based on 
whether you’re assuming or proving them.



  

We never introduce a 
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → Feathers(b))) → (∀h. (Heron(h) → Feathers(h)))

Proving vs. Assuming
● To prove the universally-quantified statement

∀x. P(x)
we introduce a new variable x representing some 
arbitrarily-chosen value.

● Then, we prove that P(x) is true for that variable x.
● That’s why we introduced a variable h in this proof 

representing a heron.



  

We never introduce a 
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → Feathers(b))) → (∀h. (Heron(h) → Feathers(h)))

Proving vs. Assuming
● If we assume the statement

∀x. P(x)
we do not introduce a variable x.

● Rather, if we find a relevant value z somewhere else in 
the proof, we can conclude that P(z) is true.

● That’s why we didn’t introduce a variable b in our proof, 
and why we concluded that h, our heron, have feathers.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Initially, do nothing. Once you
find a z through other means,

you can state it has property A.

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.
Introduce a variable
x into your proof that

has property A.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.
Initially, do nothing. Once you

know A is true, you can
conclude B is also true.

Assume A is true, then
prove B is true.

Assume A. Also assume B. Prove A. Also prove B.

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Assume A → B and B → A. Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.

If you assume
this is true…



  

Connecting Function Types



  

Types of Functions
● We now have three special types of 

functions:
● involutions, functions that undo themselves;
● injections, functions where different inputs 

go to different outputs; and
● surjections, functions that cover their whole 

codomain.
● Question: How do these three classes of 

functions relate to one another?



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.



  
Theorem: For any function f : A → A,

if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.



  
Theorem: For any function f : A → A,

if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.

If you assume
this is true…

Initially, do nothing. Once you
find a z through other means,

you can state it has property A.



  
Theorem: For any function f : A → A,

if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.

Since we’re assuming this, we
aren’t going to pick a specific
choice of x right now. Instead,
we’re going to keep an eye

out for something to
apply this fact to.

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  
Theorem: For any function f : A → A,

if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.

We’ve said that we need
to prove this

statement. How do we
do that?

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.

What do you do to prove
∀b ∈ A. [something]?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  
Theorem: For any function f : A → A,

if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.

To prove that
this is true…

Have the reader pick an
arbitrary x. Then prove A is

true for that choice of x.



  
Theorem: For any function f : A → A,

if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.There’s a universal
quantifier up front.
Since we’re proving
this, we’ll pick an
arbitrary b  ∈ A. Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  
Theorem: For any function f : A → A,

if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

Assume this. Prove this.Now, we hit an
existential quantifier.

Since we’re proving this,
we need to find a choice

of a  ∈ A where this
is true.

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  
Theorem: For any function f : A → A,

if f is an involution, then f is surjective.

꩜

+

☞
≈

⬠

b

f(b)   a

Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  

Theorem: For any function f : A → A, if f is an
involution, then f is surjective.

Proof: Pick any involution f : A → A. We will prove
that f is surjective. To do so, pick an arbitrary
b ∈ A. We need to show that there is an a ∈ A
where f(a) = b.
Specifically, pick a = f(b). This means that
f(a) = f(f(b)), and since f is an involution we know 
that f(f(b)) = b. Putting this together, we see that 
f(a) = b, which is what we needed to show. ■

This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.



  

The Two-Column Proof Organizer



  

Theorem: Let f : A → A be an involution. 
Then f is injective.



  

f : A → A is an involution.
∀z ∈ A. f(f(z)) = z.

f is injective.
∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) →

a₁ = a₂
)

Theorem: Let f : A → A be an involution.
Then f is injective.

What We’re Assuming What We Need to Prove

We’re assuming this
universally-quantified

statement, so we won’t
introduce a variable
for what’s here.

We need to prove
this universally-

quantified statement.
So let’s introduce
arbitrarily-chosen

values.



  

f : A → A is an involution.
∀z ∈ A. f(f(z)) = z.

a₁ ∈ A
a₂ ∈ A

f is injective.
∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) →

a₁ = a₂
)

Theorem: Let f : A → A be an involution.
Then f is injective.

What We’re Assuming What We Need to Prove



  

f : A → A is an involution.
∀z ∈ A. f(f(z)) = z.

a₁ ∈ A
a₂ ∈ A

f is injective.
∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) →

a₁ = a₂
)

Theorem: Let f : A → A be an involution.
Then f is injective.

What We’re Assuming What We Need to Prove

We need to prove
this implication. So

we assume the antecedent
and prove the consequent.



  

f : A → A is an involution.
∀z ∈ A. f(f(z)) = z.

a₁ ∈ A
a₂ ∈ A
f(a₁) = f(a₂)

f is injective.
∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) →

a₁ = a₂
)

Theorem: Let f : A → A be an involution.
Then f is injective.

What We’re Assuming What We Need to Prove

꩜

≈

f(a₁)

f(f(a₁))

f(a₂)

f(f(a₂))



  

f : A → A is an involution.
∀z ∈ A. f(f(z)) = z.

a₁ ∈ A
a₂ ∈ A
f(a₁) = f(a₂)
f(f(a₁)) = f(f(a₂))
f(f(a₁)) = a₁
f(f(a₂)) = a₂

f is injective.
∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) →

a₁ = a₂
)

Theorem: Let f : A → A be an involution.
Then f is injective.

What We’re Assuming What We Need to Prove

꩜

≈

f(a₁)

a₁

f(a₂)

a₂



  

Theorem: Let f : A → A be an involution. Then f
is injective.

Proof: Choose any a₁, a₂ ∈ A where f(a₁) = f(a₂). We
need to show that a₁ = a₂.
Since f(a₁) = f(a₂), we know that f(f(a₁)) = f(f(a₂)). 
Because f is an involution, we see a₁ = f(f(a₁)) and 
that f(f(a₂)) = a₂. Putting this together, we see that

a₁ = f(f(a₁)) = f(f(a₂)) = a₂,
so a₁ = a₂, as needed. ■

This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.



  

Time-Out for Announcements!



  

Problem Set One Graded
● Your wonderful TAs have finished 

grading Problem Set One.
● Grades and feedback are up on the 

Gradescope.
● Solutions are available online on the 

course website (visit the page for PS1 to 
get the link).



  

0 – 40 41 – 45 46 – 50 51 – 55 56 – 60 61 – 65 66 – 70 71 – 75

Problem Set One Graded
75th Percentile: 68 / 75 (91%)
50th Percentile: 64 / 75 (85%)
25th Percentile: 59 / 75 (78%)

Pro tips when reading a grading distribution:
 

1. Standard deviations are unhelpful and discouraging. Ignore them.
2. The average score is a unhelpful. Ignore it.
3. Raw scores are unhelpful and discouraging. Ignore them.



  

0 – 40 41 – 45 46 – 50 51 – 55 56 – 60 61 – 65 66 – 70 71 – 75

Problem Set One Graded

“Great job! Look over 
your feedback for some 
tips on how to tweak 
things for next time.”

75th Percentile: 68 / 75 (91%)
50th Percentile: 64 / 75 (85%)
25th Percentile: 59 / 75 (78%)



  

0 – 40 41 – 45 46 – 50 51 – 55 56 – 60 61 – 65 66 – 70 71 – 75

Problem Set One Graded

“You’re almost there! Review 
the feedback on your 

submission and see what to 
focus on for next time.”

75th Percentile: 68 / 75 (91%)
50th Percentile: 64 / 75 (85%)
25th Percentile: 59 / 75 (78%)



  

0 – 40 41 – 45 46 – 50 51 – 55 56 – 60 61 – 65 66 – 70 71 – 75

Problem Set One Graded

“You’re on the right track, but there 
are some areas where you need to 

improve. Review your feedback and ask 
us questions when you have them.”

75th Percentile: 68 / 75 (91%)
50th Percentile: 64 / 75 (85%)
25th Percentile: 59 / 75 (78%)



  

0 – 40 41 – 45 46 – 50 51 – 55 56 – 60 61 – 65 66 – 70 71 – 75

Problem Set One Graded

“Looks like something hasn’t quite clicked yet. 
Get in touch with us and stop by office hours 

to get some extra feedback and advice. 
Don’t get discouraged – you can do this!”

75th Percentile: 68 / 75 (91%)
50th Percentile: 64 / 75 (85%)
25th Percentile: 59 / 75 (78%)



  

What Not to Think
● “Well, I guess I’m just not good at math.”

● For most of you, this is your first time doing 
any rigorous proof-based math.

● Don’t judge your future performance based 
on a single data point.

● Life advice: have a growth mindset!
● “Hey, I did above the median. That’s 

good enough.”
● There’s always some area where you can 

improve. Take the time to see what that is.



  

Regrade Requests
● We’re human. We make mistakes. And we’re happy 

to correct them!
● Regrades will open on Gradescope 48 hours after 

grades are released. They close one week after 
grades are released.

● Notes on regrades:
● Please be civil.  We make mistakes. We’re happy to 😃

correct them.
● We have to grade what you submitted; we can’t take any 

clarifications into account during regrades.
● Regrades are for where we made deductions we shouldn’t 

have, rather than for the magnitude of deductions.



  

Essential Action Items
● Review your feedback.

● Don’t just look at the raw score. Make sure you really, 
truly understand where you need to improve.

● Read the solutions in depth.
● Make sure you understand what we were asking, why 

we asked it, and what we wanted you to take away.
● (Especially for Q8, Q10) Look at our solutions and see 

if there’s any neat lessons you can draw from them.
● Come to us with questions.

● Anything you’re not sure about? That’s what we’re here 
for! Come to office hours, ask questions on EdStem, 
etc.



  

Back to CS103!



  

Function Composition



  
People Places Prices

Kanoe

Elena

Rachel

Vyoma

Cupertino, CA

San Francisco

Redding, CA

Utqiagvik, AK

Far Too Much

A King's Ransom

A Modest Amount

More Than
You’d Expect

Clément Palo Alto, CA

f : People → Places g : Places → Prices

h : People → Prices
h(x) = g(f(x))



  

Function Composition
● Suppose that we have two functions 

f : A → B and g : B → C.
● Notice that the codomain of f is the 

domain of g. This means that we can use 
outputs from f as inputs to g.

f gf(x)
 

x
 

g(f(x))
 



  

Function Composition
● Suppose that we have two functions f : A → B 

and g : B → C.
● The composition of f and g, denoted g ∘ f, is a 

function where
● g ∘ f : A → C, and
● (g ∘ f)(x) = g(f(x)).

● A few things to notice:
● The domain of g ∘ f is the domain of f. Its codomain is 

the codomain of g.
● Even though the composition is written g ∘ f, when 

evaluating (g ∘ f)(x), the function f is evaluated first.

The name of the function is g ∘ f. 
When we apply it to an input x, 
we write (g ∘ f)(x). I don't know 

why, but that's what we do.



  

Properties of Composition



  

Theorem: If f : A → B is an injection and 
g : B → C is an injection, then the function 

g ∘ f : A → C is an injection.



  

f : A → B is an injection.
∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.
∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

g ∘ f is an injection.
∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →

(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)
)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.
What We’re Assuming What We Need to Prove

We’re assuming these
universally-quantified

statements, so we won’t
introduce any variables

for what’s here.

We need to prove
this universally-

quantified statement.
So let’s introduce
arbitrarily-chosen

values.



  

g ∘ f is an injection.
∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →

(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)
)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.
What We’re Assuming What We Need to Prove

We need to prove
this universally-

quantified statement.
So let’s introduce
arbitrarily-chosen

values.

f : A → B is an injection.
∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.
∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

a₁ ∈ A is arbitrarily-chosen.
a₂ ∈ A is arbitrarily-chosen.



  

g ∘ f is an injection.
∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →

(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)
)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.
What We’re Assuming What We Need to Prove

Now we’re looking at
an implication. Let’s

assume the antecedent
and prove the consequent.

f : A → B is an injection.
∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.
∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

a₁ ∈ A is arbitrarily-chosen.
a₂ ∈ A is arbitrarily-chosen.
a₁ ≠ a₂



  

f : A → B is an injection.
∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.
∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

a₁ ∈ A is arbitrarily-chosen.
a₂ ∈ A is arbitrarily-chosen.
a₁ ≠ a₂

g ∘ f is an injection.
∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →

(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)
)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.
What We’re Assuming What We Need to Prove

Let’s write this out
separately and simplify

things a bit.



  

f : A → B is an injection.
∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.
∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

a₁ ∈ A is arbitrarily-chosen.
a₂ ∈ A is arbitrarily-chosen.
a₁ ≠ a₂

g ∘ f is an injection.
∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →

(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)
)

g(f(a₁)) ≠ g(f(a₂))

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.
What We’re Assuming What We Need to Prove



  

f : A → B is an injection.
∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.
∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

a₁ ∈ A is arbitrarily-chosen.
a₂ ∈ A is arbitrarily-chosen.
a₁ ≠ a₂

g ∘ f is an injection.
∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →

(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)
)

g(f(a₁)) ≠ g(f(a₂))

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.
What We’re Assuming What We Need to Prove

A B C

a₁

a₂

f(a₁)

f(a₂)

g(f(a₁))

g(f(a₂))



  

Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.

Proof: Let f : A → B and g : B → C be arbitrary injections. We
will prove that the function g ∘ f : A → C is also injective.
To do so, consider any a₁, a₂ ∈ A where a₁ ≠ a₂. We will
prove that (g ∘ f)(a₁) ≠ (g ∘ f)(a₂). Equivalently, we need to
show that g(f(a₁)) ≠ g(f(a₂)).
Since f is injective and a₁ ≠ a₂, we see that f(a₁) ≠ f(a₂). 
Then, since g is injective and f(a₁) ≠ f(a₂), we see that
g(f(a₁)) ≠ g(f(a₂)), as required. ■

A B C

a₁

a₂

f(a₁)

f(a₂)

g(f(a₁))

g(f(a₂))



  

Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.

Proof: Let f : A → B and g : B → C be arbitrary injections. We
will prove that the function g ∘ f : A → C is also injective.
To do so, consider any a₁, a₂ ∈ A where a₁ ≠ a₂. We will
prove that (g ∘ f)(a₁) ≠ (g ∘ f)(a₂). Equivalently, we need to
show that g(f(a₁)) ≠ g(f(a₂)).
Since f is injective and a₁ ≠ a₂, we see that f(a₁) ≠ f(a₂). 
Then, since g is injective and f(a₁) ≠ f(a₂), we see that
g(f(a₁)) ≠ g(f(a₂)), as required. ■

A B C

a₁

a₂

f(a₁)

f(a₂)

g(f(a₁))

g(f(a₂))

This proof contains
no first-order logic
syntax (quantifiers,

connectives, etc.). It’s
written in plain English,

just as usual.



  

Theorem: If f : A → B is a surjection and 
g : B → C is a surjection, then the function 

g ∘ f : A → C is a surjection.

Proof: In the appendix!



  

Major Ideas From Today
● Proofs involving first-order definitions are heavily 

based on the structure of those definitions, yet 
FOL notation itself does not appear in the proof.

● Statements behave differently based on whether 
you’re assuming or proving them.

● When you assume a universally-quantified 
statement, initially, do nothing. Instead, keep an 
eye out for a place to apply the statement more 
specifically.

● When you prove a universally-quantified 
statement, pick an arbitrary value and try to 
prove it has the needed property.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Initially, do nothing. Once you
find a z through other means,

you can state it has property A.

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.
Introduce a variable
x into your proof that

has property A.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.
Initially, do nothing. Once you

know A is true, you can
conclude B is also true.

Assume A is true, then
prove B is true.

Assume A. Also assume B. Prove A. Also prove B.

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Assume A → B and B → A. Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.

If you assume
this is true…



  

Next Time
● Set Theory Revisited

● Formalizing our definitions.
● Proofs on Sets

● How to rigorously establish set-theoretic 
results.



  

Appendix: Additional Function Proofs



  

Proof: Composing surjections
yields a surjection.



  

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.
Consider any c ∈ C. Since g : B → C is surjective, there is 
some b ∈ B such that g(b) = c. Similarly, since f : A → B is 
surjective, there is some a ∈ A such that f(a) = b. Then
we see that

g(f(a)) = g(b) = c,
which is what we needed to show. ■

A B C

c

ba
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